Evolution under fertility and viability selection.
نویسنده
چکیده
Evolution at a single multiallelic locus under arbitrary weak selection on both fertility and viability is investigated. Discrete, nonoverlapping generations are posited for autosomal and X-linked loci in dioecious populations, but monoecious populations are studied in both discrete and continuous time. Mating is random. The results hold after several generations have elapsed. With an error of order s [i.e., O(s)], where s represents the selection intensity, the population evolves in Hardy-Weinberg proportions. Provided the change per generation of the fertilities and viabilities due to their explicit time dependence (if any) is O(s2), the rate of change of the deviation from Hardy-Weinberg proportions is O(s2). If the change per generation of the viabilities and genotypic fertilities is smaller than second order [i.e., o(s2)], then to O(s2) the rate of change of the mean fitness is equal to the genic variance. The mean fitness is the product of the mean fertility and the mean viability; in dioecious populations, the latter is the unweighted geometric mean of the mean viabilities of the two sexes. Hence, as long as there is significant gene frequency change, the mean fitness increases. If it is the fertilities of matings that change slowly [at rate o(s2)], the above conclusions apply to a modified mean fitness, defined as the product of the mean viability and the square root of the mean fertility.
منابع مشابه
A symmetric two-locus fertility model.
A model in which selection is mediated by differential fertilities among the genotypes at two diallelic loci is proposed. Fertility depends only on the number of heterozygous loci participating in the mating. Classes analogous to symmetric equilibria in symmetric viability models are determined explicitly and shown to exhibit stability behavior very different from the viability results. Linkage...
متن کاملEvolution and Selection of Quantitative Traits
7. THE POPULATION GENETICS OF SELECTION 201 Single-locus Selection: Two Alleles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Viability Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Expected time for allele frequency change . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملSelection for increased mutation rates with fertility differences between matings.
Previous studies of mutation modification have considered models in which selection is a result of viability differences that are sex symmetric. The results of a numerical study of a model in which selection is a result of fertility differences between mated pairs demonstrate that the type of selection to which a population is subject can have a significant impact on the evolution of various pa...
متن کاملOpposing selection and environmental variation modify optimal timing of breeding.
Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation o...
متن کاملFrequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana.
Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 115 2 شماره
صفحات -
تاریخ انتشار 1987